Exercise 1.73

The distance from Earth to the Moon is approximately $240,000 \mathrm{mi}$. (a) What is this distance in meters? (b) The peregrine falcon has been measured as traveling up to $350 \mathrm{~km} / \mathrm{hr}$ in a dive. If this falcon could fly to the Moon at this speed, how many seconds would it take? (c) The speed of light is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$. How long does it take for light to travel from Earth to the Moon and back again? (d) Earth travels around the Sun at an average speed of $29.783 \mathrm{~km} / \mathrm{s}$. Convert this speed to miles per hour.

Solution

Part (a)

Use dimensional analysis and the conversion factors on the inside back cover to convert from miles to meters.

$$
240,000 \mathrm{mi}=240,000 \mathrm{~m} 1 i=\frac{5280 \mathrm{ft}}{1 \mathrm{miI}} \times \frac{12 \text { 次 }}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{cmi}}{1 \text { 租 }} \times \frac{1 \mathrm{~m}}{100 \mathrm{cmi}} \approx 3.9 \times 10^{8} \mathrm{~m}
$$

The uncertainty in $240,000 \mathrm{mi}$ is assumed to be in the ten thousands place (hence two significant figures).

Part (b)

The formula relating distance, speed, and time is as follows.

$$
\text { distance }=\text { speed } \times \text { time }
$$

Solve this formula for time, plug in the numbers, and make sure the units cancel appropriately to give seconds.

$$
\begin{aligned}
& \text { time }=\frac{\text { distance }}{\text { speed }} \\
& =\frac{240,000 \mathrm{mi}}{350 \frac{\mathrm{~km}}{\mathrm{hr}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{240,000 \times 5280 \times 12 \times 2.54 \times \frac{1}{100} \times \frac{1}{1000} \mathrm{~km}}{350 \times \frac{1}{60} \times \frac{1}{60} \frac{\mathrm{kmm}}{\mathrm{~s}}} \\
& \approx 4.0 \times 10^{6} \mathrm{~s}
\end{aligned}
$$

Part（c）

The formula relating distance，speed，and time is as follows．

$$
\text { distance }=\text { speed } \times \text { time }
$$

Solve this formula for time，plug in the numbers，and make sure the units cancel appropriately．

$$
\begin{aligned}
& \text { time }=\frac{\text { distance }}{\text { speed }} \\
& =\frac{2(240,000) \mathrm{mi}}{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =\frac{2(240,000) \text { Mmi } \times \frac{5280 \mathrm{tt}}{1 \mathrm{nII}} \times \frac{12 \text { 这 }}{1 \mathrm{ft}} \times \frac{2.54 \mathrm{~cm}}{1 \text { 衣 }} \times \frac{1 \mathrm{~m}}{100 \mathrm{sm}}}{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}} \\
& =\frac{2(240,000) \times 5280 \times 12 \times 2.54 \times \frac{1}{100} \text { MK }}{3.00 \times 10^{8} \frac{\underline{\mu}}{\mathrm{~s}}} \\
& \approx 2.6 \mathrm{~s}
\end{aligned}
$$

Part（d）

Use dimensional analysis and the conversion factors on the inside back cover to convert from kilometers per second to miles per hour．

